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I. Summary.

We proposed to study several different types of problems involving partial differential

equations which arise naturally in applications.

1. Qualitative behavior of solutions of nonlinear evolution equations. We con-

sidered certain scalar nonlinear hyperbolic and parabolic equations, and also parabolic sys-

tems arising in chemical reaction kinetics. We wanted, first of all, to locate certain special

kinds of solutions when they exist, for example equilibrium states, traveling waves, and

time periodic solutions, or in some cases co-called breather solutions (spatially localized

time periodic solutions). Also we investigated the large time behavior of solutions of the

evolution problem with particular attention to the behavior of solutions which are close

to the special form solutions mentioned above. That is to say, the stability properties

of equilibrium states, periodic solutions, etc. will be studied. In some cases blow up of

solutions may occur (in which case there is no large time behavior) and in this situation

we wanted to understand as much as possible which solutions blew up, the nature of the

blow up, and which solutions existed for all times.

2. Parameter identification problems. Basic questions of seismic exploration and

other types of remote sensing problems lead naturally to problems of determining coef-

ficients in a linear hyperbolic equation or system, using as data some limited knowledge

of special solutions of the differential equation. That is to say, we try to infer knowledge

about the internal structure of a wave propagating medium by observing how it responds

to some stimulus.

Also in this category axe problems of determining the dependence of solutions on pa-

rameters in the problem. The partial differential equations often come to us from physical

models containing one or more parameters: Reynolds number, reaction rates, diffusivi-

ties, etc. An important problem is deciding tor which values of the parameters solutions

of certain special form exist, and what is the effect on the evolution problem when the

parameters are varied in some way. Mathematically we are lead to nonlinear eigenvalue

problems, bifurcation problems, etc.
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There are serious computational issues associated with many of the above questions.

Indeed, in the case of coefficient identification problems it is always a central concern to

develop useful solution algorithms. In the case of the equations of chemical reaction kinetics

when there may be very complicated dependence of solutions on many parameters, it may

be that computational continuation methods are the most reasonable way of studying, for

example, a branch of periodic solutions emanating from a Hopf bifurcation point. Even

in those situations when the numerical solutions are not of primary interest, numerical

experiments will be of great help in guiding theoretical investigations.

4



II. Research Objectives.

(Levine)

1. Nonlocal parabolic equations. We are continuing our investigation into the long time

behavior of solutions of nonlocal reaction diffusion equations of the form

(1) ut = ,,. + euu, + a (IIuII -' + b) .u

where I I denotes the L 1 norm (in x) and where a, b are constants. This equation was

studied numerically by Djomeri, Ewing, Jacobs and Straughan in their article "Nonlinear

instability for a modified form of Burger' equation" which appeared in Numerical Methods

for Partial Differential equations 3(1987). It was proposed by Drazin and Reid (Hydro-

dynamic Stability, Cambridge University Press) as a model for hydrodynamic flows with

nonlinear effects.

We have obtained a rather complete theoretical picture of the set of stationary solutions

for (1) under Dirichlet boundary conditions as well as an analysis of solutions whose initial

values are small perturbations of stationary solutions. We have begun to prepare the report

on this work.

2. Reaction-Diffusion equations. In our recent work with Bandle ( "On the Existence and

Nonexistence of Global Solutions to Reaction Diffusion Equations in Sectorial Domains"

which has been accepted for publication in the Transactions of the American Mathematical

Society), we studied the equation (with Dirichlet boundary conditions)

(2) ut=Au+up in Dx(O,T)

u=O on ODx(O,T)

which is often used to model chemically reacting systems. We showed that if the space

domain was a cone then there were two numbers p and p such that if 1 < p < p then

no nonnegative nontrivial global solution of (2) is possible, while if p > 5, then there are
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positive global solutions. A similar result was proved for (2) in the case that D was the

exterior of a bounded region. (They also took up the question of the existence of stationary

solutions and showed that under the condition that 1 < p 5 j3 then there were none and

that if p > p then they could not decay rapidly at infinity).

P. Meier, a former student of Bandle, and Levine have recently sharpened the above

result to show that if p > p then again nontrivial positive solutions do exist for all time.

To do this is was necessary to construct a super solution that did not involve the Green's

function as did the earlier argument of Fujita in the case that the domain was all of space.

3. Quenching of solutions of singular equations. We have continued our study of the long

time behavior of

(3) ut = Au + e(1- u) - /8

on space-time cylinders with a bounded spatial domain. In the case of one space dimension,

we have obtained a complete picture of the dynamical behavior of solutions. Deng (a Ph.D.

student of Levine) and Levine have also shown that (in any space dimension) the set of

points where the solution quenches is contained in a compact subdomain of the (convex)

space domain and that on this set the time derivative blows up. This result uses some

modifications of some recent results of Friedman and McLeod. It considerably improves a

recent result of Acker and Kawohl who proved the blow up of ut at quenching when the

space domain is a ball and the initial data is radially decreasing. We only require that

u (x, 0) be nonnegative.
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4. We have begun to look at the following system with Payne and Straughan.

ut +VUZ = uzz+o+ u2  -T > 0, t > 0

at + Va. v-O= 0..- > 0, t > 0

u=v, x>O, t>O

v(Ot)=u(Ot)=0 t>0

V(00 t) 0 (00 t) = 0 t > 0

O.'(o,t) =-1 t>__0

It has been reported (G. Wilks and R. Hunt, A finite time singularity of the boundary layer

equations of natural convection, ZAMP 36(1985) 905-911) that computations show that

solutions of this system (which arises in certain thermal convection problems) are never

global in time. We have shown that there are no nontrivial stationary solutions and are

working on the finite time blow up question. (A related problem was considered by C. I.

Simpson and K. Stewartson in ZAMP(1982) 370-378. In that paper 9 2 replaces 0 in the

first equation and 0,(O,t) = 1.)

(Sacks)

1. The Inverse Dirichlet Problem. Consider the Sturm-Liouville problem

Wo" + (A - q(x))V =0 0 < x < 1

o(0) = O(1) = 0

with q E L 2 (O, 1). It is known that the potential q(z) is uniquely determined by the spectral

data {Ak, pt} where Ak is the k'th eigenvalue and Pk = (k£(o) 2/1 112), s being the k'th

eigenfunction. We have developed an interative solution procedure whose main ingredient

is the solution of a certain Goursat problem at each step. This approach may involve

considerably less computational effort than other methods, e.g. solving a Gelfanil-Levitan
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integral equation. We have proved a theorem concerning tLe convergence of the successive

iterates, and numerical examples seem to show that the method works quite well in typical

cases.

Currently we are trying to adapt this technique to 4th order spectral roblems, e.g. the

inverse problem for the Euler-Bernoulli beam.

2. The Mesa Problem. Consider the Cauchy problem for the porous medium equation,

Ut = AU, x E RO, t > 0

U(z,0) = f(X)

Fcr any m > 0 and f C L'(R') there exists a (weak) solution u = um(z,t). We are

interested in the following question. Does lim u,.(x, t) exist for fixed f, and if so, what

is the limit? This question was first studeid by Elliott, Herrero, King and Ockendon,

who did some asymptotic analysis and made some conjectures. We have proved rigorous

results confirming these conjectures in some cases, extending earlier work of Caffarelli and

Friedman. In all cases for which the answer is known, it may be described as follows. The

limit is a function u = uoo(x) where u = f + Aw, and w = v - 0 where AO = f - 1 and

v satisfies the obstacle problem on R" with obstacle k.

We have proved a similar result for the case that the space domain isn an interval in R,

with u satisfying zero boundary conditions. The case of a general bounded domain in R"

remains open.

3. Coefficient identification problem involving an unknown source. Consider a constant

density acoustic half space {(x, y, z) : z > 0} characterized by a sound speed c(x, z) > 0.

At each point (x., 0,0) a source f(t, z.) of acoustic waves is set off, and the resulting

reflected waves are measured at receiver location x = x,+h for some offset h > 0. Assuming

that c is close to constant and f(t,xz) is close to some known impulsive wavelet fo(t,x.)

we show that c - 1 and f - fo can be uniquely recovered, in the linear approximation,

from the surface reflection data at any two offsets, and all source locations (x,, 0,0). A

numerical method for this purpose is also discussed.
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(Alexander)

1. Implicit Runge-Kutta Methods.

a) Higher order DIRK formulae. We have determined coefficients satisfying the algebraic

identities required for a formula to be

- of order 4 or 5,

- diagonally implicit, that is, the coefficient matrix is lower triangular and all diagonal

entries are equal,

- A-stable, so that the formula is possibly useful for solving stiff problems, and

- strongly S-stable, which is a consequence of the preceding two properties if the last

quadrature point is 1 and the last row of the amtrix is the vector of quadrature

weights.

We use numerical optimization in the solution variety to minimize the sum of squares of

errors in the coefficients of differentials in the truncation error, subject to bounds on the

coefficients. We have identified an optimal 4th order formula. Work on 5th order formulae

is in progress.

b) The code DIRK based on these formulae is being prepared for submission to Transac-

tions on Mathematical Software. This is an initial-value code with an adaptive equation-

soiving strategy suitable for both stiff and nonstiff problems; it uses Hermite quintic inter-

polation to provide dense output if required, without interfering with the optimally chosen

stepsize.

c) We are studying the stability and error analysis of implicit Runge-Kutta formulae for

the class of linear time-varying ODE systems with coefficient matrices essentially negative

dominant in the sense of Kreiss. We seek to establish criteria for stability, and to show

convergence to smooth solutions.

d) In collaboration with Ph.D. student J. J. Coyle, we have applied these methods to

differential- algebraic systems. In work to appear in SIAM J. Numer. Analysis, we show

how to overcome "order reduction", the observed loss of order of convergence of DIRK

9



formulae. We derive conditions for the order of accuracy without assuming that the coeffi-

cient matrix is nonsingular, and establish algebraic conditions for a method with singular

coefficient matrix to be well defined for linear constant-coefficient systems of arbitrary

index. We present an example of a formula which converges with the desired order of

accuracy on index-two systems on which Petzold's code DDASSL grinds to a halt.

2. Diffusion Flame in a Chamber.

Matalon, Ludford and Buckmaster derived the following boundary value problem in

their study of the near-ignition regime for a diffusion flame in a chamber:

y11 + QX-'(1 - X)el' = , 0 < X < 1

y(O) = Y(o) = 0.

Numerical computation exhibit a value of Q = Q* > 0 such that

there is no solution of the problem when Q > Q*,

there is exactly one solution when Q = Q*,

there are just two solutions when 0 < Q < Q*.

The analysis is interesting because of the singularity at x = 0. By formulating the problem

in an appropriate function space and using the theory of monotone operators, we can

demonstrate the first two properties and give upper and lower bounds on Q*. We can

show that there are at least two solutions for 0 < Q < Q*; it is expected that analysis

of the eigenvalue problem for the linearized problem will yield the remaining part of the

conclusion.

3. Two-Dimensional Digital Filter Stability.

A two-dimensional, linear shift invariant, quarter-plane causal digital filter is charac-

terized by the z-transform of its impulse response, which is a rational function of two

variables, say P/Q the zero sets of P and Q are algebraic curves in 2 - D, not isolated

poles. It is a difficult problem to determine whether the filter is (BIBO-) stable when P
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and Q, though relatively prime, hiave a common zero on the distinguished boundary of the

unit bidisc, that is, on the torus.

Alexander and Woods (IEEE Trans. CAS, Sept. 1982) gave an analytical criterion in

terms of absolute integrability of partial derivatives of the transform function. Dautov

(USSR) has given an algebraic criterion when the denominator Q splits into linear factors.

We have reformulated Dautov's result in terms of the intersection number of the alge-

braic curves P = 0 and Q = 0 at the point of indeterminacy. We conjecture that this

purely algebraic criterion suffices in general. A proof requires formulating the analytic

consequences of this fact and showing that they are sufficient for absolute convergence of

a double Fourier series.
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4. Tubular Chemical Reactors.

Our recent study [SIAM J. Math. Anal., to appear] of the low conversion steady states

improved the results of Alexander, [J. Math. Anal. Appl. June, 19841 in two respects:

We used the method of averaging to get an accurate count of the number of steady

states;

We showed that the solutions of the approximating equation studied in the earlier

paper actually yield solutions of the full reactor equations.

The late Professor Ludford asked whether any of these solutions were stable. We are

now studying this problem. We also intend to use the AUTO code of Doedel to compute

branches of time-periodic solutions originating at Hopf bifurcation points.

5. A Semilinear Wave Equation.

In our study of the problem

Utt-Uzz=L 3 cosu, 0< x< 1, t >0;

u(O,t) = u(1,t) = 0; u(x,O),ut(z,O) given.

we have computed a number of steady state solutions. LInearization about these steady

states has revealed either all imaginary eigenvalues, or one pair of real eigenvalues (one

positive and the other negative) with the remaining eigenvalues pure imaginary. (The

spectrum has been computed numerically.) We shall look at solutions in the neighborhood

of the "linearly neutrally stable" steady states in an attempt to detect the presence of a

potential well. The multiplicity and structure of steady states seem to be accessible to

analytical methods.
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